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CHAPTER 13

CONFIGURATION OF POLYMER MOLECULES AND
RUBBER ELASTICITY

In this chapter we present a brief introduction to polymer configuration
problems and to the theory of rubber elasticity. The treatment is based
to a considerable extent on the work of James and Guth (Supplementary
Reading list). A number of other topics having to do primarily with
polymer molecules in solution will be discussed in Chapter 21.

The basic prototype for polymer chains can be represented as

R R R R R
NN NN
R R E R

where R is the monomer unit, and the chain continues indefinitely at both
ends, The configuration shown above is the fully extended configuration.
Actually, because of rotation of the attached groups of R’'s around each
R—R bond, a great many configurations are possible, of which the ex-
tended configuration is only one. One of the fundamental problems in
polymer statistics is to deduce the relative number of configurations of a
long polymer chain consistent with a specified end-to-end distance (Fig.
13-1). This problem is closely related to problems in brownian motion,
random walks, diffusion, etc.

z
dx dy dz

x

Fia. 13-1. Long polymer chain with end-to-end vector r.
214
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One of the simplest polymer chains, polymethylene, has R = CH,.
Other well-known possibilities for R are:

CgHg C:IH3
—CH,—CH— —CH,—C=CH—CH,—
Polystyrene Rubber

In typical cases the number of monomers in a chain might be from 100 to
10,000.

13~1 Freely jointed chain. To handle this problem we first have to
generalize the formalism of Section 7-4. Consider a linear polymer chain
made up of M units, where M is large enough so that one chain can be
considered a thermodynamic system. Each unit can exist in the states
1= 1,2, ..., n with partition functions 7;(T") and lengths I;, The total
length of the chain is I. The system (chain) is characterized thermo-
dynamically by I, M, T. The canonical ensemble partition function is then

n M
oM, =Y ]l 1{-;—_;, (13-1)
M g ¥

where M; is the number of units with length l;, and the sum is over all
sets M = My, Mo, ..., M, consistent with the restrictions

n
D M; =M, (13-2)
g1

»
LM =1 (13-3)
i=1
Equation (13-1) is a rather obvious generalization of Eq. (7-58). Here,
for purposes of symmetry, we choose [ as independent variable instead of
one of the M; [M, was used in Eq. (7-568)]. The appropriate thermody-
namic equation is
dAd = —8dT + rdl + pdM, (134)
with
A= —kThQ (13-5)
and 7 = force pulling on the chain.
The restriction (13-3) is troublesome; to avoid it we change to another
partition function. We use the partition function

Atr, M, T) = 35 QC, M, )™ (13-6)
[
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This is the analog of Eq. (1-87). The connection with thermodynamics is
= —8dT — ldr + pdM, (13-7)
F=A—7l=pM = —kTha. (13-8)

We substitute Egs. (13-1) and (13-3) in Eq. (13-6) and obtain

A(r, M, T) = EM!]](’

gl

.IH) M

where now the only restriction on sets M is (13-2). The sum can be car-
ried out immediately, and we have

s, 1,1 = (i MW = tm DY, a30)
=1
This gives, for example, for the average length I of the chain at a given
force 7,
_ a_lv_’ (a In A) 3ln s)
a‘rur—k ur—MkT or /r
_ i@ M, T LT
= 000, M, Mo = MF o (13-10)

Equations (13-1) through (13-10) are formally the same as Eqs. (7-23)
through (7-29). Therefore the notation A = ¢ in Eq. (13-9) is appro-
priate. The partition function ¢ for one unit has the same form as A in
Eq. (13-6) for the entire chain [just as ¢ in Eq. (7-27) resembles E in
Eq. (7-25)).

We now consider a special case, a chain of M units, each of length a,
with “free” joints between units. That is, if we choose one end of any
unit as origin, the other end of the unit moves freely (in the absence of a
force on the chain) over the surface of a sphere with radius a (Fig. 13-2).
The ends of the chain are a distance ! apart and are on the z-axis. If the
left end of the chain is considered fixed, we want to calculate, among other
things, the equilibrium force 7 along the z-axis necessary to hold the chain
extended a distance ! (Fig. 13-2). Real polymer chains do not have:free
joints between monomers (R units), but an approximate connection can be
established between real chains and this idealized model (see Section 13-2).

The contribution of any one unit to ! can range from —a to +a. Thus
l; in Eq. (13-9) can vary continuously between these limits. We use x for
this continuous variable. It is clear from Eq. (13-10) that j; is proportional
to the probability of a length I; being observed when there is no force on
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.

T

\

Fra. 13-2. Two-dimensional version of freely jointed chain. Each unit is of
length a¢. The ends are on the z-axis and are a distance ! apart.

the chain (r = 0). When there is a force, j™*T is proportional to this
probability. In the present problem, then, we let j(z, T) dx be propor-
tional to the probability that the end of a freely moving unit (Fig. 13-2)
will have an z-component in dz. It is easy to see (Problem 13-1) that
this probability is in fact independent of z (in the range —a < z < +a).
Therefore we have

= [Time

— %a
=

where { = ra/kT. From Eq. (13-10) we find for the length-force relation

sinh ¢, (13-11)

I = MkT (‘%‘;ﬁ | = Mas(), (13-12)

t=g! ("MZE)’ (13-13)

where £ is the Langevin function defined in Eq. (12-30) and £~ is the
inverse Langevin function. The maximum extension is Ma; to achieve
this we need ¢ — oo. Figure 12-3 provides us with a plot of I/Ma (ordinate)
against ¢ (abscissa).

The occurrence of the same (Langevin) function here and in Section
12-3 is not surprising. In Section 12-3 we were dealing with freely ro-
tating dipoles perturbed in their rotation by an electric field. Here we
have freely rotating units of a chain perturbed in their rotation by a force
pulling on the chain.

or
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At small extensions (I < Ma), we use £(f) = /3 and find the linear
relationship

= _Mgz—a or T= 3;—:2 . (13-14)
Thus [ = 0 when 7 = 0, which is what we should expect on symmetry
grounds (I can be positive or negative; with 7 > 0 we have l > 0).

The question of fluctuations is of some interest. For example, when
7 = 0 does the value of ! fluctuate much about [ = 0? By the methods
of Section 2-1 we find (Problem 13-2) from Eq. (13-10) for the fluctuation
in / at fixed 7,

B — (0O =kT (g—z)u'r- (13-15)

From Fig. 12-3, we see that dl/ar is largest at small extensions. In the
limit as 7 — 0 (Eq. 13-14),

=% _ L, (13-16)

where we compare the fluctuation 2 with the maximum extension Mg in-
stead of , since I — 0 as 7 — 0. The subscript on I3 refers to 7 = 0.
Thus, if M = 8000, 0;/Ma = 10™2, a rather significant fluctuation.
The conclusion we draw from this is that chains of this size are not quite
macroscopic in the thermodynamic sense. Hence, although quantities such
as 7, I, B, T, etc., are well defined (see Sections 3—4 and 7-2) and equations
of the type (13-10), (13-13), and (13-15) are valid, functions such as E,
F, 8, A, ete., for a single chain are slightly fuzzy in their thermodynamic
significance. These latter functions become sharply defined, of course, for
a system consisting of a large number of chains (as is always the case in
practice).

From Eq. (13-16) we have that I2 = Ma?/3. Then Eq. (13-14) can
be written
kTl

== 13-17
il (13-17)

Actually, the length-force equation in this form is applicable to small ex-
tensions of any kind of chain with J; = 0. This relation follows directly
from Eq. (13-15) and the necessary (by symmetry) linear dependence of
7 on ] at small /.

The generalization of Eq. (13-17) to l # 0 (as, for example, in Section
7-4) and extensions that are not small can be deduced by a method which
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has very wide applicability in statistical mechanics. Define Ay from Eq.
(13-6) by
A(M,T) = A, M, T) = EQ(I) M,T),
T

and rewrite Eq. (13-10) as

= 1 (9a/8) |
1= A/l (31’/’010' M,T (13-18)

Now if we expand the exponential in Eq. (13-6), we find

A _ Tieo (i) T100, M, DEATY _ 1 (77
RS ST N ‘§ﬁ(ﬁ> o

where I3, a function of M and T in general, is the average value of I at
zero force. This follows from Eq. (13-10), which states that the prob-
ability of the chain having & length I is proportional to Qe™/*T when the
force is 7 and to @ when 7 = 0 [see also Eq. (2-13)]. The occurrence of
“unperturbed” (7 = 0) averages is the essential point here, since these
are not so difficult to calculate. Equation (13-18) becomes, then,

7 _ Tt /G — DNG/RT) ' (1510
Tono (/i) /KDY TG

This gives I — I, as a power series in 7/kT, or vice versa. We shall not
pursue this method further here (but see Problem 13-3).

As just indicated, @Q(I, M, T) is proportional to the probability that the
free (r = 0) chain has a length I (for given M and T). An equivalent
statement is that Q(I, M, T) is proportional to the number of configurations
(a configurational degeneracy) the chain can assume consistent with a
length I, for given M and T. The dependence of this probability on [ is
perhaps the most important single property of a polymer chain. We
are now in a position to deduce this dependence for a freely jointed chain
(and more general chains) from Q. The same results can be obtained from
the theory of random walks, without use of any of our statistical thermo-
dynamical formalism.

The general method we employ is to integrate the length-force relation
to obtain 4 and hence Q, using Eqs. (13—4) and (13-5). It should be noted
that at this point we make use of macroscopic thermodynamics; hence in
the following we are dealing implicitly with the limit of very long chains
(M — «). For the freely jointed chain,

R 7 (_l_)
dA =7dl = a [ Wa dl (T, M constant),
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Wip -l @] o

Q(O M T) = exp (13-20)
This is the probability of a free chain having a length [ relative to the
probability of a length | = 0. It is also the ratio of the number of con-

figurations of the chain with length [ to the number with length zero. If
we use the expansion (Problem 13—4)

and therefore

') =3+ 8%+, (13-21)
which can be deduced from Eq. (12-31), Eq. (13-20) becomes

QID (- u[2(L) + 5 (%) +- ] asam

When I € Ma, we keep just the first term in this expansion and obtain
the gaussian probability distribution ordinarily used,

S = e, (13-23)

This equation also follows directly on integrating the linear length-force
equation, (13-14). Thus the gaussian probability distribution for the
length of a free chain and the linear length-force relation for a chain under
an extending force have the same limits of validity (Problem 13-5). To
go beyond the linear length-force range, configurations of the chain with
values of ! outside the gaussian region become involved. That the “gaus-
sian region” is in fact quite extensive can be seen as follows. The ratio of
the correction term in Eq. (13-22) to the gaussian term is (3/10)(l/Ma)2.
Even for a very large extension, this quantity is small compared with
unity. For example, take M = 1000 and an extension !’ of ten times the
root mean-square extension (Ma2/3)Y/2. Then

r ) 10_ 1
10 =M~ 100
We have been emphasizing the probability significance of @ and Qe™V*T
for the length of a chain with fixed force. But one must also keep in mind
that @ has the usual connections with the thermodynamic properties of a
chain with fixed length (fluctuating force). An example is the deduction of
the linear ! — 7 relation from Q(!) in Eq. (13-23) (Problem 13-6). An-
other example is the derivation of an equation for the dependence of the
entropy S of a chain on its length . In the present model, @(l, M, T) has
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the functional form (Eq. 13-20)

Ql, M, T) = @O, M, T)f(, M). (13-24)
This relation, combined with Eq. (1-33) for 8, leads immediately to
8¢ M,T) — 8O, M, T) = kiInf = kln [Q/Q(0)]

~-k f & %)a (13-25)

3k12 3 1\
== Ma = "EM"(EE) (¢ < Ma).

(13-26)

The entropy is & maximum (largest number of configurations) at I = 0
and decreases with increasing I. The right side of Eq. (13-25) approaches
—o0 when | — Ma. This, however, is pushing the model too far: a real
polymer molecule, when fully extended, will not be rigid, but will have
internal vibrational motion. The analog of this situation for an ideal gas
is letting V ~— 0 in Eq. (4-20).

It is possible to write Eq. (13-20) in an alternative and more explicit
form. Thus, from Eqgs. (13-11) and (13-13),

Q = ¢—ABT — p ~TIAT

- [Pt el - Lo (i)

QL M, T) _ [sinh .e—‘a/Ma)]“ [_ - (A% )]

Qo M, 1~ emitay | L™ o \ag/)]” 4320
Here again we should note that the limit M — oo is implicit, since we
have made use of the thermodynamic equivalence of the partition func-
tions @ and A. Equation (13-22) may also be obtained from Eq. (13-27)
(Problem 13-7).

From Eq. (13-19) we can derive a more general version of Eq. (13-23)

[or Eq. (13-22)) for any polymer chain (see also Problem 13-3). We
integrate dA = 7 dl, where

T = kTT————(l — 10) ’
13 - (Io)2

or

(13-28)
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and obtain

QLM T) _ 1 (¢ —)?
m— OXD[—E_ 0 ]; (13-29)

where M is a number proportional to the mass of the polymer molecule.
Thus a gaussian probability distribution about I = lo = Il;, for small
extensions, is always found. Since in general 7, and 7§ are functions of
temperature, Eq. (13-26) is somewhat more complicated here. For ex-
ample, if Io(T) = 0, we find (Problem 13-8)

_@_ﬁ_[

(6 lné
2 M

1= d In T)u]. (13-30)

We should expect I3 to increase with temperature for a real molecule
owing to increased freedom of rotation about chemical bonds in the chain.

As a final topic in this section, we consider briefly the one-dimensional
version of a freely jointed chain. The chain has M units, each of length a.
Each unit must now always lie on the z-axis so that the possible contribu-
tions of a unit to ! are the two values —a or +a. Thus the chain resembles
a folding ruler. In random-walk language, this is a random walk along a
line with each step of length +a or —a. In Eq. (13-9), we take l; = }a,
lo = —a,and j, = j, = j. Then

S, M, T) — S0,M,T) =

M
= (95 7
A= (2] cosh kT) (13-31)
and, from Eq. (13-10),
1= Matanht, t= 7a/kT, (13-32)

3
t=tanh"(“%)=%+%(ill—a) ool (13-33)

Just as the three-dimensional freely jointed chain under a pulling force
resembles a gas of dipolar molecules oriented by an electric field (Section
12-3), the one-dimensional freely jointed chain under a force resembles a
system of magnetic dipoles in a magnetic field (Section 12-4). In particu-
lar, Eqgs. (12-45) and (13-32) should be compared. Figure 124 is also a
plot of I/Ma (ordinate) against ¢ (abscissa).

The present one-dimensional problem is a special case of the model
discussed at the beginning of Section 7—4 using different independent vari-
ables. The connection in notation is l, = —a, I = ¢, and j. = js = j.
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By the same methods as for the three-dimensional case, we find
(Problem 13-9)

S0 3T = [“ : / tanh ™" (rfa) dl] (13-34)

= cosh™ (tanh-‘ %) exp (— 7: tanh‘l—l‘;—-a) (13-35)

S TR BT e

13-2 Gaussian probability distribution for free polymer molecules. In
this section we discuss further the gaussian probability distribution for
free (r = 0) polymer molecules with the usual property I, = 0. Since the
Zh%le section is concerned with free chains, we drop the subsecript zero on
1y, 15, ete.

We saw in the preceding section that if one end of a long polymer
molecule is chosen as origin and the other end is forced to lie on a pre-
assigned line passing through the origin, say the z-axis, then according to
Eq. (13-29), the probability that the ends of the molecule will be separated
by a distance ! is proportional, for I not too large, to exp (—12/2%). Since
the direction of the preassigned line is arbitrary, we can make the equiva-
lent alternative statement that if one end of a polymer molecule is chosen
as origin, the probability that the other end will lie in a specified volume
element dx dy dz, a distance r from the origin (Fig. 13-1), is proportional
to

and I3 = Ma?.

e84y dy dz.

As a next step, we can conclude that if one end of a polymer molecule is
chosen as origin, the probability that the other end is at a distance between
r and r + dr, trrespective of direction, is

&
e"‘"’ 2 garr? dr

f e g? gy

(]

P(r) dr = = @D ~¥3"1% 3 4 (13-37)

This probability is normalized to unity. The average values of r2 and r
are

2= /; r2P(r) dr = 3, (13-38)
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a

(2) (b

Fra. 13-3. Chain with fixed angle 0 between units. In part (b), if the left
unit is on the z-axis, the end of the right unit (point B) can be anywhere on the
dotted circle. The angle ¢ is measured from some fixed point 4.

r= ]: rP(r) dr = (8?)”2 = (-8—?:2)”2 . (13-39)

Thus ! = 0 but ¥ > 0 (! can be positive or negative, but r is always
positive). Using Eq. (13-38), Eq. (13-37) takes the more appropriate

form
8/2
P(r) dr = (—3;2) LA (13-40)

Equation (13-40), it will be recalled, follows from the very general
equation (13-29) and is therefore not restricted to any particular model.
In various special cases, an explicit expression can be given for 3. For
example, for the freely jointed chain of Section 13-1, B = Ma?/3, and
hence r2 = Ma?. We now list, without proof,* some further results for
idealized models of polymer molecules, which, however, are considerably
more realistic than the freely jointed chain.

(1) If the chain has M units or bonds of length a, and ¢ is the fixed
bond angle between successive bonds (Fig. 13-3a), and if rotation about
bonds (see the angle ¢ in Fig. 13-3b) is free, then for large M,

72— prg2{lL—cos)

= Ma* ey (13-41)
The tetrahedral angle # = 109.5° is the case of most interest: 2 = 2Ma2.
If 6 = 90° r2 = Ma?, as for a freely jointed chain.

* See Flory, pp. 414-422, for more details.
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(2) If fixed bond angles 6, and 8, alternate (e.g., 0—Si—O and Si—0—S8i
in the silicone chain), then

P = apar G 00 W0 — cocly) (13-42)

for large M.

(3) Here we have the same situation as in (1) except that rotation about
¢ is hindered (see Section 9-5). For a hindering potential V{(¢) which is
symmetrical about ¢ = 0,

T _ ppar (1= 008 0)(1 + B
(1 + cos O)(1 — c089)

(13-43)

for large M and ¢08 ¢ not too near unity, where

1 3
/o cos pe— VW g,
P = . (13-44)
]; v e~V IET de

If V(o) =0 orif V(p) = V(e + 2rm™"), where m > 2, as in Eq. (9-18),
then ¢05¢ = 0 and Eq. (13-43) reduces to Eq. (13—41). However, actual
polymer chains will not have this symmetry, and the Gos ¢ correction will
be significant.

Although the models leading to Eqs. (13-41) through (13-43) are
much more realistic than a freely jointed chain, they still cannot be taken
too seriously. For example, bending and stretching of bonds have not
been taken into account. Much more important, van der Waals (or other)
attractions and, especially, repulsions between different units of the chain
have been ignored. The neglect of van der Waals repulsions enters all the
above models with the implicit assumption that the chain has a length
but no thickness. Because of this complication alone, the polymer con-
figuration problem differs significantly from ordinary random-walk
problems: in a given polymer configuration, two parts of the chain cannot
cross each other (occupy the same space), but there is no such restriction
on random-walk (or diffusion) paths. In polymer language, this is called
the excluded volume problem, and much recent theoretical work has been
done on it.* _

For the above reasons, detailed theories providing expressions-for r2
in terms of a model are not very practical. Instead, one can regard r3

* See, for example, F. T. WaLL and J. J. ERPENBECK, J. Chem. Phya. 30, 634,
637 (1959). These authors find that 72 « M?, where b = 1.18 for a tetrahedral
lattice.



226 POLYMER CONFIGURATION AND RUBBER ELASTICITY [cHAP. 13

in Eq. (13-40) as an empirical quantity to be determined by some physical
property of the polymer molecules that can be related to 3.

An approximale semiempirical device that may be used to relate a real
chain of unknown 12 to the simplest model above, the freely jointed chain,
is the following. Bond angle restrictions exist between one monomer and
the next in a real polymer molecule. But if we call, say, five or ten (de-
pending on the stiffness of the chain) monomers one “statistical unit,”
then the (end-to-end) direction of one statistical unit is essentially in-
dependent of the direction of neighboring statistical units in the chain. In
fact, enough monomers are included in a statistical unit to ensure this
independence. Thus we can replace the actual restricted chain of mono-
mers by an equivalent chain of freely jointed statistical units. If M is
the number of monomers in the chain and »n the number in a statistical
unit, then the number of statistical units is M’ = M /n. The length of a
statistical unit, a’, is estimated as the root mean-square end-to-end dis-
tance of a statistical unit (i.e., a chain of n monomers). Then, finally, in
Eq. (13-40) we put

2 = M'a'? (13-45)

as for a freely jointed chain. The excluded volume problem is ignored
here.

If ¥2 is known, then M’ and o’ can be chosen in a unique way so that not
only does the product M’a’? equal 72 but also so that the fully extended
length of the effective freely jointed chain, M'a/, is equal to the fully ex-
tended length of the real chain, lyay. That is, from the equations

= Ma? and lne = M,
we deduce

2
M=t g o= = (13-46)

Again the excluded volume problem is ignored.

13-3 Rubber elasticity. Rubber consists of an isotropi¢ network of
long polymer chains. The space-filling property of the chains, referred to
in Section 13-2 in connection with the excluded volume problem, is im-
portant here, for rubber is a condensed phase with some liquidlike proper-
ties. A rather good analogy to a sample of rubber is a large tightly packed
collection of very long actively wiggling worms, with each end of each
worm attached to one end of each of three other worms (to form a network).
The junctions joining the ends of four chains (worms) together are called
cross-links. A real network will of course have imperfections (chains with
free ends, etc.) just as a real crystal has imperfections.
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It is commonplace that rubber has rather unique elastic behavior. This
behavior is a consequence of the special configurational properties of
polymer molecules considered in the preceding sections. We shall give
here only a very brief and semiphenomenological discussion of rubber
elasticity. An adequate treatment of the details of polymer network
theory would take us far beyond the scope of this book. The reader inter-
ested in this subject should see the papers of James and Guth (Supple-
mentary Reading list). The alternative, simpler, but less satisfactory
theory of rubber elasticity, due to Wall, will be presented in Chapter 21.
This latter theory provides the starting point for the only existing theories
of polymer and polyelectrolyte gels, ete.

Let us begin by summarizing the observed thermodynamic behavior
of rubber for extensions up to the order of 300%,. First, rubber is approxi-
mately incompressible (as are typical liquids); when rubber is stretched,
the volume stays almost constant. We can therefore use the following
rather accurate thermodynamic equations for a sample of rubber of definite
mass (L = length of sample):

dE = T dS + rdL, (1347)
dA = —8dT + rdL, (13-48)

- (g—f)r — rg+ 75 (1349)
T8 = —T(gLS- = T(%,)L, (13-51)

where 7g and 7 are the energy and entropy contributions to the force 7.
By measuring 7 as a function of both L and T, 75 can be calculated from
(37/0T) 1, and hence g can be obtained from Eq. (13—49). It is found
in this way that 7z is approximately zero: the elasticity of rubber is an
entropy effect. Thus E depends on T but not on L. The implication of
this is that when rubber is extended, the intermolecular potential energy
remains constant, which is not surprising for a condensed phase of con-
stant volume, and also that the extension is made possible by sufficient
uncoiling of the polymer chains but does not involve any bending or
stretching of chemical bonds. This behavior is equivalent to that of an
ideal gas: F is a function of T but not V; and in the equation analogous
to Eq. (1349), p = pe + ps, p2 = 0.
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An alternative and equivalent experimental observation is that the force
7 is directly proportional to T at constant L. From the relation

rerg= —T (g—‘%)r (13-52)

we conclude, then, that (8S/0L)r is a function of L only. This is consistent
with a split of the entropy into two parts:

8 = 81(T) + 85(L), (13-53)

where S3(L) is the entropy associated with the configurational degeneracy
of the polymer chains of the network. Again there is an analogy with an
ideal gas: (3S/08V)r is a function of V only; 8 = 8,(T) + S2(V). For an
ideal gas, replace, in Eq. (13-52), 7 by p, 75 by ps, and —(3S/3L)r by
(a8/6V)r = NK/V.

On the basis of the above discussion, we postulate that the essential
molecular mechanism determining the elasticity of rubber is the elasticity
of the individual chains making up the network, and this in turn is de-
termined by the configurational properties of the chains (Section 13-2).
We have to superimpose on this postulate the facts that the volume is
constant on stretching and that a hydrostatic pressure exists in the rubber,
just as in any liquid.

Consider an isotropic cube of rubber, with edge Loy, when under no
force. The volume is ¥V = LJ. Now let a force 7 extend the rubber in the
a-direction so that L = L, > Lo. Then

Ly=1L, V=IL3§=LLL,=LL: (13-54)

Let us examine the mechanical equilibrium at a surface of the stretched
rubber perpendicular to the 2-axis. There is an outward force pLL, owing
to the hydrostatic pressure, but this is just balanced by the inward force
of the molecular chains. We cannot write a satisfactory and completely
explicit expression for this inward force without a detailed study of the
properties of the network. However, for the small extensions we are in-
terested in, we can deduce from Eq. (13-17) for a single chain that the
inward force exerted by a network of N chains will have the form CNkTL,,
since L, will be proportional to I, for a single chain. Here, C is a constant
which depends on the structure of the network. On equating the inward
and outward forces, and putting L, = L,, we find

p= L. (13-55)



13-3] RUBBER ELASTICITY 229

Force

Fia. 13-4. Comparison of experimental and theoretical length-force rela-
tions for rubber in a typical case. The vertical scale has been adjusted to give
best fit.

Next, consider the mechanical equilibrium at the surface (perpendicular
to the 2-axis) which is being pulled by an external force 7. Here 7 + pL?
(outward force) is balanced by CNETL (inward force). Then

T = CNkKTL — pL}. (13-56)
From Eqgs. (13-54) and (13-55) this becomes

7 = CNkTL, (a - ;1—,) (13-57)

where « = L/L,. This is the desired length-force equation, valid for
small (up to about « = 3) extensions. Of course « = 1 when 7 = 0.
The initial slope, (dr/da)a=1, i8 3CNkTLo. Experiment and theory
are compared in Fig. 13-4, where the vertical scale has been adjusted to
give the best fit. The experimental “knee” is well reproduced by the theory.
Deviations occur, as expected, at high extensions.

In the Wall theory of Chapter 21, C = Lj2.
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ProOBLEMS

13-1. Show that the function j(z, T') for a unit in a three-dimensional freely
jointed chain is independent of z in the range —a < 2 < - a. (Page 217.)

13-2. Derive Eq. (13-15) for the fluctuation in length of a chain under a
constant force. (Page 218.)

13-3. For any molecule with I = I = :-+ = 0, show from Eq. (13-19)

that
l=lﬁ(—) l[117—(3)"‘](—’— e (13-58)
kT " 213" kT
Invert this series to get 7/kT in powers of [, then integrate dA = r dl to find

QT _ A I P
b 4 -1 U 13-59
ao,n P { [a%)’ 3@*] + } (-5

72
Equation (13-59) is exact only for M — oo, but Eq. (13-58) is exact in general.
By comparing Eqs. (13-12) and (13-58), show that, for a freely jointed chain,

— 2 — 2 4
o = MTa and 13 M ( — %) (13-60)
(Page 219.)

13-4. Deduce the expansion of £-1(z) from that of £(y) in Eq. (12-31).
(Page 220.)

13-5. Use the gaussian form for Q(l) (Eq. 13-29) to deduce A from Eq. (13-6)
and I from Eq. (13-10). The result should agree with Eq. (13-28), of course.
(Page 220.)

13-6. Derive the length-force equation, (13-14), from the canonical ensemble
equations (13—4), (13-5), and (13-23). (Page 220.)

13-7. Deduce the probability expansion (13-22) from Eq. (13-27). (Page 221.)

13-8. Deduce the entropy equation (13-30) from Eqs. (1-33) and (13-29).
(Page 222.)

13-9. Derive Eqs. (13-34) through (13-36) for a one-dimensional freely
jointed chain. (Page 223.)

13-10. Obtain the equivalent of Eqs. (13-60) in Problem 13-3 for the one-
dimensional freely jointed chain.

13-11. Discuss the problem of a two-dimensional freely jointed chain.

13-12. Derive Eq. (13-33) as a special case of Eq. (7-59).

13-13. Discuss the problem of a three-dimensional freely jointed chain in
which each unit can have two lengths, a, and ag, with partition functions §.(T)
and jg(T) [in the notation of Eq. (13-11)]. Consider also the problem in which
each unit can have any length between ¢ = 0 and ¢ = a, with equal prob-
ability. Incidentally, in an equivalent chain of statistical units, a gaussian dis-
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tribution in a for the length of a statistical unit would be an appropriate approxi-
mation (in the text, we use a single length ).

13-14. Calculate I3 and I§ from the gaussian function (13-23). Compare with
Problem 13-3.

13-15. Show the identity of Eqs. (13-34) and (13-35).
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