
CHAPTER 13 

CONFIGURATION OF POLYME2 MOLECULES AND 
RUBBER ELASTICITY 

In thia chapter we present a brief introduction to polymer configuration 
problems and to the theory of rubber elasticity. The treatment is based 
to a considerable extent on the work of James and Guth (Supplementary 
Reading liet). A number of other topics having to do primarily with 
polymer molecules in solution will be discussed in Chapter 21. 

The basic prototype for polymer chaina can be represented as 

/"\ R /"\ R /"\ R /"\ R /"\ 

where R is the monomer Unit, and the chain continues indefinitely at both 
en&. The configuration shown above is the fully extended configuration. 
Actually, because of rotation of the attached p u p  of R's around each 
R-R bond, a great many configurations are possible, of which the ex- 
tended con6guration is only one. One of the fundamental problems in 
polymer statistics is to deduce the relative number of configurations of a 
long polymer chain consistent with a specified ead-toend distance (Fig. 
13-1). This problem is cloaely related to problems in brownian motion, 
random walks, diffusion, etc. 
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13-1. Long polymer chain with end-bend 
214 

vector r. 
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One of the simplest polymer chains, polymethylene, has R = CH2. 
Other well-known possibilities for R are: 

C6H5 CHa 
I 

--CH2--(*/----CH--CHa- 
I 

4 H d H -  
Pol* yrene Rubber 

In typical casea the number of monomers in a chain might be from 100 to 
10,Ooo. 

13-1 Fmely jointed chain. To handle this problem we 6rst have to 
generalize the formalism of Section 7-4. Consider a linear polymer chain 
made up of M units, where M is large enough so that one chain can be 
considered a thermodynamic system. Each unit can exist in the states 
i = 1, 2, . . . , n with partition functions j i (T)  and lengths h. The total 
length of the chain is 1. The system (chain) is characterized thermo- 
dynamically by Z, M ,  T .  The canonical ensemble partition function is then 

where Mi is the number of unita with length k, and the sum is over all 
sets M = M I ,  M2, . . . , Mn consistent with the restrictions 

2iwi= M, 
i l l  

EQuation (13-1) is a rather obvious generalieation of EQ. (7-58). Here, 
for purposes of symmetry, we choose I 88 independent variable instead of 
one of the Mi [Me WBB used in Eq. (7-58)]. The appropriate thmody- 
namio equation is 

with 
d A =  - S d T + r d l + p d M ,  (13-4) 

A = --kThQ (13-5) 

and r = force pulli i  on the chain. 

partition function. We use the partition function 
The restriction (13-3) is troublesome; to avoid it we change to another 
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This is the analog of Eq. (1-87). The connection with thermodynamics is 

dF = -SdT - I &  + NdM, (13-7) 

F = A - 71 = p M  = -kTlnA. (13-8) 

We substitute Eqs. (13-1) and (13-3) in Eq. (13-6) and obtain 

where now the only restriction on sets M is (13-2). The sum can be car- 
ried out immediately, and we have 

This gives, for example, for the average length 1 of the chain at a given 
force 7, 

1 = - tz) = kT ( F ) ~ , ~  a l n A  = MkT (F) a h €  
M.T T 

(13-10) 

Equations (13-1) through (13-10) are formally the same as Eqs. (7-23) 
through (7-29). Therefore the notation A = I" in Eq. (13-9) is appro- 
priate. The partition function € for one unit haa the same form as A in 
Eq. (13-6) for the entire chain [just as € in Eq. (7-27) resembles Z in 

We now consider a special case, a chain of M units, each of length a, 
with "free" joints between units. That is, if we choose one end of any 
unit as origin, the other end of the unit moves freely (in the absence of a 
force on the chain) over the surface of a sphere with radius a (Fig. 13-2). 
The ends of the chain are a distance 1 apart and are on the z-axis. If the 
left end of the chain is considered fixed, we want to calculate, among other 
things, the equilibrium force 7 along the z-axis necessary to hold the chain 
extended a distance I (Fig. 13-2). Real polymer chains do not haveafree 
joints between monomers (R units), but an approximate connection can be 
established between real chains and this idealized model (see Section 13-2). 

The contribution of any one unit to 1 can range from -a to +a. Thus 
li in Eq. (13-9) can vary continuously between these limits. We use z for 
this continuous variable. It is clear from Eq. (13-10) thatji is proportional 
to the probability of a length 1s beiig observed when there is no force on 

Eq. (7-%)I. 
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FIG. 13-2. Two-dimensional version of freely jointed chain. Each unit is of 
length a. The ends are on the x-axb and are a distance 1 apart. 

the chain (7 = 0). men there is a force, j,&/kT is proportional to this 
probability. In the present problem, then, we let j(%, 2‘) & be propor- 
tional to the probability that the end of a freely moving unit (Fig. 13-2) 
will have an %-component in dx. It is easy to see (Problem 13-1) that 
this probability is in fact independent of 2 (in the range -a 5 2 5 +a). 
Therefore we have 

E = /” j (OerZ/kTb  
4 

2ja 
t = -8inht, (13-11) 

where t = ra/kT. From Eq. (13-10) we find for the length-force relation 

1 = MkT (”-%) = M&(t), (13-12) 37 T 
or 

t =  8” &) J (13-13) 

where 8 is the Langevin function defined in Eq. (12-30) and 8-’ is the 
inverse h g e v i n  function. The maximum extension is Ma; to achieve 
this we need t + 00. Figure 12-3 provides ua with a plot of l/Ma (ordinate) 
again& t (abscissa). 

The occurrence of the same (Langevin) function here and in Section 
12-3 is not surprising. In Section 12-3 we were dealing with freely ro- 
tating dipoles perturbed in their rotation by an electric field. Here we 
have freely rotating unita of a chain perturbed in their rotation by a force 
pulling on the chain. 
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At small extensions (1 << Ma), we use Z(t) = t/3 and find the linear 
relationship 

3kT1 or r = - .  3i 
M a  Ma2 

t = -  (13-14) 

Thus 1 = 0 when r = 0, which is what we should expect on symmetry 
grounds (1 can be positive or negative; with r > 0 we have 1 > 0). 

The question of fluctuations is of some interest. For example, when 
r = 0 does the value of 1 fluctuate much about 1 = 01 By the methods 
of Section 2-1 we find (Problem 13-2) from Eq. (13-10) for the fluctuation 
in 1 at fixed r. 

(13-15) 

From Fig. 12-3, we see that at/& is largest at small extensions. In the 
limit as r 0 (Eq. 13-14), 

(13-16) 

where we compare the fluctuation @ with the maximum extention Ma in- 
stead of I ,  since 1 + 0 as r + 0. The subscript on refers to r = 0. 
Thus, if M = 3oO0, ul/Ma = a rather significant fluctuation. 
The conclusion we draw from this is that chaiis of this size are not quite 
macroscopic in the thermodynamic sense. Hence, although quantities such 
as r, 1, F, T, etc., are well dehed (see Sections 3-4 and 7-2) and equations 
of the type (13-lo), (13-13), and (13-15) are valid, functions such as E, 
F, S, A, etc., for a single chain are slightly fuzzy in their thermodynamic 
significance. These latter functions become sharply dehed, of course, for 
a system consisting of a Zarge number of chains (as is always the case in 
practice). 

= Ma2/3. Then Eq. (13-14) can 
be written 

From Eq. (13-16) we have that 

(13-17) 

Actually, the length-force equation in this form is applicable to small ex- 
tensions of any kind of chain with = 0. Thie relation follows directly 
from Eq. (13-15) and the necessary (by symmetry) linear dependence of 
r on 1 at small 1. 

The genediestion of Eq. (13-17) to & # 0 (as, for example, in Section 
7-4) and extensions that are not small can be deduced by a method which 
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has very wide applicability in statistical mechanics. Define A0 from Eq. 

and rewrite Eq. (13-10) 88 

(13-18) 

Now if we expand the exponential in Eq. (134), we find 

where 2, a function of M and T in general, is the average value of 1' at 
mo fm. This follows from Eq. (13-lo), which etatea that the prob- 
ability of the chaii having a length 1 is proportional to QeT1lkT when the 
force is T and to Q when T = 0 [see ale0 Eq. (2-13)]. The occurrence of 
"unperturbed" (T = 0)  averages is the easential point here, since these 
are not so di5cult to calculate. Equation (13-18) becomes, then, 

This gives I - &, as a power series in r/kT, or vice versa. We shall not 
pursue this method further here (but see Problem 13-3). 
Ae just indicated, Q(l, M, T )  is proportional to the probability that the 

free (T = 0) chaii has a length I (for given M and T). An equivalent 
statement is that Q(1, M, 2') is proportional to the number of configurations 
(a configurational degeneracy) the chain can assume consistent with a 
length 1, for given M and T .  The dependence of this probability on 1 is 
perhaps the most important single property of a polymer chain. We 
are now in a position to deduce this dependence for a freely jointed chain 
(and more general chains) from Q. The same results can be obtained from 
the theory of random walks, without use of any of our statistical thermo- 
dynamical formalism. 

The general method we employ is to integrate the length-force relation 
to obtain A and hence Q, using Eqs. (13-4) and (13-5). It should be noted 
that at this point we make use of macroscopic thermodynamics; hence in 
the following we are dealing implicitly with the limit of very long chains 
(M OD). For the freely jointed chain, 

d A  = T dl = kT 8-' (A) dl a (T,  21.1 constant), 
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and therefore 

This is the probability of a free chain having a length I relative to the 
probability of a length 2 = 0. It is also the ratio of the number of con- 
@mations of the chain with length 1 to the number with length zero. If 
we use the expansion (Problem 13-4) 

Ec-l(z) = 3z + %8 + * * ) (13-21) 

which can be deduced from Eq. (12-31)) Eq. (13-20) becomes 

when 1 << Mu) we keep just the first term in this expansion and obtain 
the gaussian probability distribution ordinarily used, 

This equation also follows directly on integratiig the linear length-force 
equation, (13-14). Thus the gauasian probability distribution for the 
length of a free chain and the linear length-force relation for a chain under 
an extending force have the same l i i t s  of validity (Problem 13-5). To 
go beyond the linear length-force range, configurations of the chain with 
values of 2 outside the gaussian region become involved. That the "gaus- 
sian region" is in fact quite extensive can be m n  as followe. The ratio of 
the correction term in Eq. (13-22) to the gaussian term is (3/10)(Z/Ma)3. 
Even for a very large extension, this quantity is small compared with 
unity. For example, take M = lo00 and an extension 2' of ten times the 
root mean-square extension (Ma2/3)'l2. Then 

We have been emphasizing the probability significance of Q and Qe'l/kT 
for the length of a chain with$x&force. But one must also keep in mind 
that Q has the usual connections with the thermodynamic properties of a 
chain with $x& length (fluctuating force). An example is the deduction of 
the linear 1 - T relation from Q(l) in Eq. (13-23) (Problem 13-6). An- 
other example is the derivation of an equation for the dependence of the 
entropy S of a chain on its length 2. In the present model, Q(Z) M ,  T )  has 
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the functional form (Eq. 13-20) 

=---  3ML - - 3 Mk (&)2 ( I  << Ma). 2Mas 2 
(13-M) 

The entropy is a maximum (largest number of configurations) at I = 0 
and decreases with increasing Z. The right side of Eq. (13-25) approaches 
-00 when I + Ma. This, however, is pushing the model too far: a real 
polymer molecule, when fully extended, will not be rigid, but will have 
internal vibrational motion. The d o g  of this situation for an ideal gas 
is letting V 

It is possible to write Eq. (13-20) in an alternative and more explicit 
fom. Thus, from Eqs. (13-11) and (13-13), 

0 in Eq. (4-20). 

or 

Here again we should note that the limit 11-1 -+ oo is implicit, since we 
have made use of the thermodynamic equivalence of the partition func- 
tiom Q and A. Equation (13-22) may also be obtained from &. (13-27) 
(Problem 13-7). 

From Eq. (13-19) we can derive a more general version of Eq. (13-23) 
[or Eq. (13-22)] for any polymer chain (see also Problem 13-3). We 
integrate d A  = r dl, where 
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and obtain 

(13-29) 

where Y is a number proportional to the m885 of the polymer molecule. 
Thus a gaussian probability distribution about 1 = 10 = &, for small 
extensions, is aZumys found. Since in general & and are functions of 
temperature, Eq. (13-26) is somewhat more complicated here. For ex- 
ample, if &(T) = 0, we find (Problem 13-8) 

- 
S(1, M, T )  - S(0, M ,  T )  = Mk l 2  . (13-30) 

2 M1; 

We should expect to increase with temperature for a real molecule 
owing to increased freedom of rotation about chemical bonds in the chain. 
As a final topic in this section, we consider briefly the one-dimensional 

version of a freely jointed chain. The chain has M units, each of length a. 
Each unit must now always lie on the x-axis so that the possible contribu- 
tions of a unit to 1 are the two values -a or +a. Thus the chain resembles 
a folding ruler. In random-walk language, this is a random walk along a 
line with each step of length +a or -a. In Eq. (13-9), we take 11 = +a, 
12 = -a, and j1  = j 2  = j. Then 

(13-31) 

and, from Eq. (13-lo), 

1 = Ma hnh  t ,  t = ra/kT, (13-32) 

t = tanh-' (&) = - 1 1 1  + - &y + - - - . (13-33) Ma 3 

Just as the three-dimensional freely jointed chain under a pulling force 
resembles a gas of dipolar molecules oriented by an electric field (Section 
12-3), the one-dimensional freely jointed chain under a force resembles a 
syetem of magnetic dipoles in a magnetic field (Section 12-4). In  particu- 
lar, Eqs. (12-45) and (13-32) should be compared. Figure 1 2 4  is also a 
plot of l/Mu (ordinate) against t (abscissa). 

The present one-dimensional problem is a special csse of the model 
discussed a t  the beginning of Section 7-4 using Merent independent vari- 
ables. The connection in notation is 1, = -a, le = +a, and j ,  = j,9 = j .  
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By the same methods as for the three-dimensional case, we find 
(Problem 13-9) 

(13-34) 

= coshM (tanh-' A) exp (- 4 a tanh- 'z  Ma ) (13-35) 

and = Ma'. 

13-2 Gaussian probability distribution for free polymer molecules. In 
this section we discuss further the gaussian probability distribution for 
free (7 = 0) polymer molecules with the usual property G = 0. Since the 
whole section is concerned with free chains, we drop the subscript zero on 
1, a, etc. 

We saw in the preceding section that if one end of a long polymer 
molecule is chosen as origin and the other end is forced to lie on a pre- 
assigned line passing through the origin, say the z-axis, then according to 
m. (13-29), the probability that the ends of the molecule will be separated 
by a distance 1 is proportional, for 1 not too large, to exp (-12/2F). Since 
the direction of the preassigned line is arbitrary, we can make the equiva- 
lent alternative statement that if one end of a polymer molecule is chosen 
as origin, the probability that the other end will lie in a epecified volume 
element dz dg dz, a distance r from the origin (Fig. 13-1), is proportional 

- 

to 

As a next step, we can conclude that if one end of a polymer molecule is 
chosen as origin, the probability that the other end is at a distance between 
r and r + dr, i r rep t i ve  of direction, is 

This probability is normalized to unity. The average values of r2 and r 
are 

7 = /a taP(r) dr = 3i?, (13-38) 
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(4 (b) 

FIG. 13-3. Chsin with fixed angle 8 between unita. In part (b), if the left 
unit is on the z-axis, the end of the right unit (point B) can be anywhere on the 
dotted circle. The angle (p is meaaured from some fixed point A. 

Thus 1 = 0 but t > 0 (I can be positive or negative, but r is always 
positive). Using Eq. (13-a), a. (13-37) takes the more appropriate 
form 

Quation (13-40), it will be recalled, follows from the very general 
equation (13-29) and is therefore not restricted to any particular model. 
In various special cases, an explicit expression can be given for p. For 
example, for the freely jointed chain of Section 13-1, P = Ma2/3, and 
hence r"l = Ma2. We now list, without proof,* some further results for 
idealized models of polymer molecules, which, however, are considerably 
more realistic than the freely jointed chain. 

(1) If the chain has M units or bonds of length a, and 8 is the fixed 
bond angle between succemive bonds (Fig. 13-3a), and if rotation about 
bonds (see the angle (p in Fig. 13-3b) is free, then for large M, 

The tetrahedral angle B = 109.5' is the case of most interest: 
If 8 = 90°, P = Ma2, as for a freely jointed chain. 

= 2Ma2. 

* See Flory, pp. 414-422, for more details. 
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(2) If fixed bond angles el and 83 alternate (e.g., 0 - S i - O  and Si-O-Si 
in the silicone chain), then 

for large M. 
(3) Here we have the same situation 88 in (1) except that rotation about 

(p is hindered (see Section 9-5). For a hindering potential V(9) which is 
symmetrical about (p = 0, 

(13-43) (1 - COB e)(i + 
(1 + COB e)(i - coacpl 

- 
r2 = Ma 

for large M and coB(p not too near unity, where 

If V((p) P 0 or if V(p) = V(p + 2rm-'), where m 2 2, aa in Eq. (9-18)) 
then cos(p = 0 and Eq. (13-43) reducee to Eq. (1341). However, actual 
polymer chains will not have this symmetry, and the correction will 
be significant. 

Although the models leading to Eqs. (13-41) through (13-43) are 
much more realiiic than a freely jointed chain, they still cannot be taken 
too seriously. For example, bending and stretching of bonds have not 
been taken into account. Much more important, van der Wads (or other) 
attractions and, especially, repulsions between different units of the chain 
have been ignored. The neglect of van der Wads repulsions enters all the 
above models with the implicit assumption that the chain has a length 
but no thickness. Becsuse of this complication alone, the polymer con- 
figuration problem differs significantly from o r d i i  random-walk 
problems: in a given polymer configuration, two parts of the chaii cannot 
cross each other (occupy the same space), but there is no such restriction 
on random-walk (or diffusion) paths. In polymer language, this is called 
the excluded volume problem, and much recent theoretical work has been 
done on it.* 

For the above reasons, detailed theories providing expressions.for 3 
in terms of a model are not very practical. Instead, one can regard ? 

*he, for example, F. T. WALL and J. J. ERPENBECK, J .  C h .  Phys. 30,634, 
637 (1959). These authors find that 3 a Bfb, where b = 1.18 for a tetrahedral 
lattice. 
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in Eq. (13-40) as an empirical quantity to be determined by some physical 
property of the polymer molecules that can be related to 3. 
An approzimute semiempirical device that may be used to relate a real 

chain of unlmoum F to the simplest model above, the freely jointed chain, 
is the following. Bond angle restrictione exist between one monomer and 
the next in a real polymer molecule. But if we call, say, five or ten (de- 
pending on the stiffness of the chain) monomers one "statistical unit," 
then the (end-to-end) direction of one ststisticsl unit is essentially in- 
dependent of the direction of neighboring statistical units in the chain. In 
fact, enough monomers are included in a statistical unit to ensure this 
independence. Thus we can replace the actual restricted chain of mono- 
mers by an equivalent chain of freely jointed statistical units. If M is 
the number of monomers in the chain and n the number in a statistical 
unit,. then the number of statistical units is M' = M/n. The length of a 
statistical unit, a', is estimated as the root mean-square end-toend dis- 
tance of a statistical unit (i.e., a chain of n monomers). Then, finally, in 
Eq. (13-40) we put - 

P = M'a'', 03-45] 

as for a freely jointed chain. The excluded volume problem is ignored 
here.- 

If P is known, then M' and a' can be chosen in a unique way so that not 
only does the product M'a'' equal 3 but also so that the fully extended 
length of the effective freely jointed chain, M'a', is equal to the fully ex- 
tended length of the real chain, Lu. That is, from the equations 

r2 = M'a'' and Lu = M'a', 
- 

- we deduce 

(13-46) 
and a ' = - .  r2 M' = 

r2 bU 

Again the excluded volume problem is ignored. 

13-3 Rubber elastidty. Rubber consists of an isotropih network of 
long polymer chains. The space-wg property of the chains, referred to 
in Section 13-2 in connection with the excluded volume problem, is im- 
portant here, for rubber is a condensed phase with some liquidlike proper- 
ties. A rather good analogy to a sample of rubber is a large tightly packed 
collection of very long actively wiggling worms, with each end of each 
worm attached to one end of each of three other worms (to form a network). 
The junctions joining the ends of four chains (worms) together are called 
cross-links. A real network will of course have imperfections (chains with 
free ends, etc.) just asa real crystal has imperfections. 
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It is commonplace that rubber has rather unique elastic behavior. This 
behavior is a consequence of the special configurational properties of 
polymer molecules considered in the preceding sectiolie. We shall give 
here only a very brief and semiphenomenological discussion of rubber 
elasticity. An adequate treatment of the details of polymer network 
theory would take us far  beyond the scope of this book. The reader inter- 
ested in this subject should see the papers of James and Guth (Supple- 
mentary W i g  list). The alternative, simpler, but less satisfactory 
theory of rubber elasticity, due to Wall, will be presented in Chapter 21. 
This latter theory provides the starting point for the only existiig theories 
of polymer and polyelectrolyte gels, etc. 

Let us begin by summmiziig the observed thermodynamic behavior 
of rubber for extensions up to the order of 30%. First, rubber is approxi- 
mately incompressible (as are typical liquids) ; when rubber is stretched, 
the volume stays almost constant. We can therefore use the following 
rather accurate thermodynamic equations for a sample of rubber of definite 
mass ( L  = length of sample): 

d E =  T d S + r d L ,  03-47) 

(13-51) 

where TE and r s  are the energy and entropy contributions to the force r. 
By meaeuring r as a function of both L and T,  r8 can be calculated from 
( & / ~ T ) L ,  and hence TB can be obtained from Eq. (13-49). It is found 
in this way that r~ is approximately zero: the elasticity of rubber is an 
entropy effect. Thus E depends on T but not on L. The implication of 
this is that when rubber is extended, the intermolecular potential energy 
remains constant, which is not surprising for a condensed phase of con- 
stant volume, and also that the extension is made possible by su5cient 
uncoiling of the polymer chaiis but does not involve any bending or 
stretching of chemical bonds. This behavior is equivalent to that of an 
ideal gas: E is a function of T but not V; and in the equation analogous 
to %. (lag), p = p E  + p8, P E  = 0. 
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An alternative and equivalent experimental observation is that the force 
T is directly proportional to T at constant L. From the relation 

(13-52) 

we conclude, then, that (aS/aL)T is a function of L only. This ie consistent 
with a split of the entropy into two parts: 

where Sz(L) is the entropy 888oci8ted with the configurational degeneracy 
of the polymer chains of the network. Again there is an analogy with an 
ideal gas: (aS/av)~ is a function of V only; S = &(T) + Sa(V). For an 
ideal gas, replace, in Eq. (13-52), T by p ,  TS by ps ,  and -(aS/aL)r by 
(aS/aV)r = Nk/V.  
On the basii of the above diecumion, we postulate that the essential 

molecular mechanism determining the elasticity of rubber is the elasticity 
of the individual chain8 making up the network, and this in turn is de- 
termined by the configurational properties of the chains (Section 13-2). 
We have to superimpose on this postulate the facts that the volume is 
constant on stretching and that a hydrostatic pressure exists in the rubber, 
just as in any liquid. 

Consider an isotropic cube of rubber, with edge LO, when under no 
force. The volume is V = Lt. Now let a force T extend the rubber in the 
direction 80 that L = Ls > LO. Then 

L, = La, v = Lt = LL,La = LLE. (13-w 

Let UB examine the mechanical equilibrium at a surface of the stretched 
rubber perpendicular to the z-axis. There is an outward force pLLv owing 
to the hydrostatic pressure, but this is just balanced by the inward force 
of the molecular chains. We cannot write a satisfactory and completely 
explicit expreaeion for this inward force without a detailed study of the 
properties of the network. However, for the d extensions we are in- 
terested in, we can deduce from %. (13-17) for a single chain that the 
inward force exerted by a network of N chains will have the form CNkTL., 
since La will be proportional to & for 8 single chain. Here, C is a constant 
which depends on the structure of the network. On equating the inward 
and outward forces, and putting L, = L,, we find 

CNkT 
L 

p = - .  
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FIQ. 13-4. Comparison of experimental and theoretical length-force rela- 
tione for rubber in a typical awe. The vertical scale baa been adjusted to give 
beat fit. 

Next, consider the mechanical equilibrium at the surface (perpendicular 
to the z-axis) which is beiig pulled by an external force T. Here T + pLi 
(outward force) is balanced by CNkTL (inward force). Then 

T = CNkTL - pLi. (13-56) 

From Eqs. (13-54) and (13-55) this becomes 

(13-57) 

where a = L/Lo. This is the desired length-force equation, valid for 
small (up to about a = 3) extensions. Of course a = 1 when T = 0. 
The initial dope, (d~/d&,l, is 3CNkTLo. Experiment and theory 
are compared in Fig. 13-4, where the vertical d e  has been adjusted to 
give the best fit. The experimental "knee" is well reproduced by the theory. 
Deviations occur, 88 expected, at high extensions. 
In the Wall theory of Chapter 21, C = LT2. 
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PROBLEMS 

13-1. Show that the function j(z, 2') for a unit in a three-dimensional freely 

13-2. Derive Eq. (13-15) for the fluctuation in length of a chain under a 

13-3. For any molecule with 16 = = ... = 0, show from Eq. (13-19) 

jointed chain is independent of z in the range -a ,< z 5 + a. (Page 217.) 

constant force. (Page 218.) 

that 

Invert thii series to get r/kT in powers of 1, then integrate d A  = r dl to find 

Equation (13-59) is exact only for M + 00,  but Eq. (13-58) is exact in general. 
By comparing Eqs. (13-12) and (13-58), show that, for a freely jointed chain, 

(Page 219.) 
13-4. Deduce the expansion of 8-'(z) from that of &(g) in Eq. (12-31). 

(Pas m.1 
13-5. Use the gaUeaian form for Q(l) (Eq. 13-29) to deduce A from Eq. (13-6) 

and f from Eq. (13-10). The result should agree with Eq. (13-28), of course. 
(Page 220.) 
13-6. Derive the length-force equation, (13-14), from the canonical ensemble 

equations (13-4), (13-5), and (13-23). (Page 220.) 
13-7. Deduce the probability expansion (13-22) from Eq. (1347). (Page 221.) 
13-8. Deduce the entropy equation (13-30) from Eqs. (1-33) and (13-29). 

13-9. Derive Eqa. (13-34) through (13-36) for a onedimensional freely 

13-10. Obtain the equivalent of Eqa. (13-60) in Problem 13-3 for the one- 

13-11. Discuss the problem of a two-dimensional freely jointed chain. 
13-12. Derive Eq. (13-33) as a special case of Eq. (7-59). 
13-13. Discuse the problem of a three-dimensional freely jointed chain in 

which each unit can have two lengths, o, and w, with partition functions j,(T) 
and j@(T) [in the notation of Eq. (13-ll)]. Consider ale0 the problem in which 
each unit can have any length between a = 0 and a = a,,, with equal prob- 
ability. Incidentally, in an equivalent chain of statistical unita, a g a d n  die- 

(Page 222.) 

jointed chain. (Page 223.) 

dimensional freely jointed chain. 
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tribution in u for the length of a statistical unit would be an appropriate approxi- 
mation (in the text, we we a single length a'). 

13-14. Calculate a and 8 from the gauasian function (13-23). Compare with 
Problem 13-3. 

13-15. Show the identity of -8. (13-34) and (13-35). 
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